Application Note · PlasmaQuant MS Q

Challenge

Determination of up to 33 elements in the range of ng/L to g/L in samples with high matrix load and various interferences.

Solution

ICP-MS PlasmaQuant MS Q with patented 3D focusing of ions for high sensitivity and integrated collision reaction cell technology for targeted removal of interferences.

Intended audience

Clinical diagnostics laboratories, research, pharma.

Universal Sample Preparation of Clinical Samples by Alkaline Dilution for Determining up to 33 Elements Using ICP-MS

Introduction

The determination of trace elements in human samples has become a standard method in medical diagnostics. The most common applications are analyses of whole blood, serum, plasma, and urine for various elements. The information which can be obtained from the elemental concentration varies depending on the element and sample type. Essential trace elements such as copper, zinc, selenium, or iodine are mainly used as biomarkers. Certain diseases are known to cause deficiency or excess of certain trace elements, so if the concentration is outside the reference range, this could be a valuable indication for diagnosis. On the other hand, occupational medicine regularly analyzes clinical samples to monitor occupational exposure to toxic elements such as lead, chromium, cadmium, nickel, or mercury. Further possible applications include the monitoring of treatments (e.g., platinum determination after administration of platinum-based cytostatics) and implants (e.g., potential migration of titanium, chromium, or cobalt from implants

into the human body). Due to the high number of elements and sometimes very low concentrations which must be determined in human samples, inductively coupled plasmamass spectrometry (ICP-MS) is the method of choice for this application. Its main advantages are multi-element capability, which allows short measurement times and, thus, high sample throughput, and better sensitivity for most elements compared to other techniques for elemental analysis.

In particular, whole blood is a challenging matrix because it contains more cells and proteins than plasma or serum. If diluted with acidic solutions, which is the typical way of sample preparation for ICP-MS analysis, these cells and proteins often precipitate by denaturation, coagulation or due to protonation. Elements bound to or adsorbed by precipitated material are lost from the solution, compromising the analytical result.

Aspiration of precipitates can also cause blockages within the ICP-MS nebulizer. Therefore, best practice for the sample preparation of whole blood is dilution with alkali solution containing ammonia for breaking up cells and preventing protein precipitation. Furthermore, the complexing agent EDTA helps stabilizing elements which are typically unstable under alkali conditions. The surfactant Tergitol is used to improve cell lysis, stabilize proteins and lipids in solution and to improve the washout from the tubings system. It is a more ecofriendly surfactant than the commonly used Triton X, which is no longer permitted for use without official authorization due to European REACH regulation. The presence of carbon has been shown to improve ionization efficiency for certain elements such as arsenic

Materials and Methods

Samples and reagents

- Ultrapure water type I (>18.2 MΩ cm, ELGA Purelab[®], Veolia Water Technologies Germany GmbH, Celle, Germany)
- Ammonia solution 25%, p.a. (Merck KGaA, Darmstadt, Germany)
- 2-Propanol, VLSI grade (Carl Roth GmbH + Co. KG, Karlsruhe, Germany)
- EDTA, 99–101% (Supelco, Merck KGaA, Darmstadt, Germany)
- Tergitol 15-S-9 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
- ClinCal[®] Calibrators Whole blood (Lot 1458), plasma (Lot 1177), serum (Lot 1318), urine (Lot 1489) (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek[®] Whole blood Control Level I, III Lot 1299 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek[®] Plasma Control Level I, II Lot 1518 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek[®] Serum Control Level I, II Lots 2062 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek[®] Urine Control Level I, II Lot 2170 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- Seronorm[™] Trace Elements Whole Blood L-2 Lot 1406264 (SERO AS, Billingstad, Norway)
- Seronorm[™] Trace Elements Serum L-1 Lot 1309438, L-2 Lot 1309416 (SERO AS, Billingstad, Norway)
- Seronorm[™] Trace Elements Urine L-1 Lot 1403080, L-2 Lot 1403081 (SERO AS, Billingstad, Norway)
- Single element standard solutions (Sc, Tb: TraceCert[®], 1000 mg/L; Y: TraceCert[®], 10000 mg/L; Rh, Ir: High-Purity Standards, 1000 mg/L)

and selenium. Consequently, a varying carbon content between samples and standards could lead to biased results. Therefore, 2-propanol is added for increasing the carbon content of all solutions to equalize the differences in natural carbon.

The present work demonstrates that the alkali dilution approach is suitable for all four typical clinical matrices, so that the ICP-MS introduction system does not need to be changed from acidic to alkali conditions and vice versa when different types of matrices are to be analyzed. By using matrix calibrators, the matrix matched calibration is simplified as less calibration levels need to be prepared.

Sample preparation

The lyophilized control materials were reconstituted with ultrapure water following the manufacturer's information. Reconstituted and fresh blood, plasma, and serum samples were diluted 20-fold prior to analysis with an alkali preparation solution consisting of 1% (*w*) ammonia, 0.5% (*V*) 2-propanol, 0.1 g/L EDTA, and 0.01% (*V*) Tergitol.

Reagent blank

Due to the number of chemicals used in the preparation solution and their high concentration, minimizing the contribution of impurities to the background elemental concentration of the preparation solution is crucial for sensitive and accurate measurements. Therefore, different products were tested for their contamination with all analytes. It was found that the contribution of different purity grades of ammonia and 2-propanol were negligible compared to the impurities introduced by EDTA. Surprisingly, the p.a. grade EDTA tested contained much lower traces of certain elements, e.g., Cr, Mn, Co, Cd, Pb than trace metals basis grade EDTA, though it was slightly more contaminated with others. Since this work focuses on a large list of elements, the p.a. grade EDTA was considered the best compromise, whereas for optimum analytical conditions for a certain element, the trace metals basis grade EDTA might be the better choice. Unfortunately, Tergitol 15-S-9 is not available in different purity grades.

Calibration

The lyophilized calibrators were reconstituted with ultrapure water following the manufacturer's information. Three calibration levels were prepared for each matrix by applying different dilution factors. The calibrators for blood and serum were diluted 200-, 100-, and 20-fold with the alkali preparation solution. The calibrator for plasma was diluted 500-, 200-, 100-, and 20-fold, and the calibrator for urine was diluted 4000-, 1000-, 200-, 100-, and 20-fold. To correct for long-term drifts and matrix effects, an internal standard solution containing 20 µg/L Sc, Y, Rh, Tb, and Ir in alkali preparation solution was prepared.

Instrument settings

For the analysis a PlasmaQuant MS Q ICP-MS (Analytik Jena GmbH+Co. KG, Jena, Germany) was used. Further details on the configuration of the system are listed in Table 1.

Table 1: Instrument configuration

Parameter	Specification
Nebulizer	SeaSpray™ (0.4 mL/min)
Spray chamber	Scott double-pass, Peltier-cooled
Torch	Fassel-Torch with 2.4 mm injector
Cones	Nickel sampler und skimmer
Autosampler	ASX-560 (CETAC) with enclosure, HEPA filter and ASXpress Plus (CETAC) rapid sample introduction system
Sample loop	1.25 mL, 1.0 mm ID

The alkali preparation solution was used as the rinse solution of the autosampler and as the carrier solution of the rapid sample introduction system. The internal standard solution was added on-line to the sample solution via the peristaltic pump of the PlasmaQuant MS Q. Black/black PVC tubing (0.76 mm ID) was used for introducing the sample solution and orange/green PVC tubing (0.38 mm ID) was used for the internal standard solution.

Method parameters

The method parameters used are given in Table 2.

Table 2: General method parameters

Parameter	Specification
Plasma gas flow	9.0 L/min
Auxiliary gas flow	1.50 L/min
Sheath gas flow	0.00 L/min
Nebulizer gas flow	0.98 L/min
RF power	1.26 kW
Sampling depth	6.0 mm
Pump rate	15 rpm
iCRC gas, flow	Hydrogen – 200 mL/min (H ₂) Helium – 120 mL/min (He120); 200 mL/min (He200)
Stabilization delay	30 s (H ₂); 25 s (nG); 20 s (He120); 10 s (He200)*
Spray chamber temperature	3 ℃
Skimmer bias (BOOST)	6 V (H ₂)
Points per peak	1 (peak hopping)
Scans per replicate	5
Replicates	3

* The stabilization delay of the first measurement mode includes sample uptake. Between measurement modes, switching times of < 5 s can be chosen. To obtain the best measuring precision possible, longer stabilization delays were used achieving an average RSD of < 2%.</p>

 $\rm H_2$ – Hydrogen mode; nG – no gas; He120 – Helium mode 120 mL/min; He200 – Helium mode 200 mL/min

For eliminating matrix- and/or plasma-based polyatomic interferences, helium as a collision gas and hydrogen as a reaction gas were introduced into Analytik Jena's patented integrated collision reaction cell (iCRC). To achieve a maximum sensitivity and lowest limits of detection for elements measured in reaction mode, the patented BOOST technology was used. In BOOST mode, a positive voltage is applied to the back of the skimmer cone. This enables compensating the loss of sensitivity by collision of analytes with gas molecules in reaction gas mode with high flow rates. Isotopes which are not interfered by polyatomic interferences were measured in no gas mode. In total, four different measurement modes were used in this method: hydrogen, no gas, and two helium modes with flow rates of 120 mL/min and 200 mL/min, respectively.

Evaluation parameters

The choice of isotopes, measurement modes, and dwell times is shown in Table 3. For Pb, the sum of the isotopes ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb was used to account for variability of isotopic abundances. For Hg, the sum of the isotopes ¹⁹⁹Hg, ²⁰⁰Hg, ²⁰¹Hg und ²⁰²Hg was used to achieve a higher sensitivity. This can be done because no interferences are expected on any of these isotopes.

For internal standards a dwell time of 20 ms in hydrogenand no gas modes, and 50 ms in helium modes was chosen. The isotopes chosen were ⁴⁵Sc, ⁸⁹Y, ¹⁰³Rh, ¹⁵⁹Tb, and ¹⁹³Ir. Using the ASXPress Plus sample introduction system, a total measuring time of 2.5 min for all elements listed in Table 3 could be achieved including sample uptake, measurement, and rinsing.

Table 3: Element specific method parameters

Element	lsotope	Expected polyatomic interferences	Mode	Correction equation	Dwell time [ms]	Internal standard
Aluminum	²⁷ AI	$^{13}C^{14}N^{+}$, $^{11}B^{16}O^{+}$	He120		50	⁴⁵ Sc
Antimony	¹²¹ Sb		NG		20	Interpolate
Arsenic	⁷⁵ As	⁴⁰ Ar ³⁵ Cl ⁺ , ⁷⁴ Ge ¹ H ⁺	H ₂		50	⁸⁹ Y
Barium	¹³⁷ Ba		NG		20	Interpolate
Beryllium	⁹ Be		NG		100	⁴⁵ Sc
Bismuth	²⁰⁹ Bi		NG		50	¹⁹³ lr
Cadmium	¹¹⁴ Cd		NG	- 0.0268 · 118Sn	20	Interpolate
Calcium	⁴⁴ Ca		H ₂		20	⁴⁵ Sc
Chromium	⁵² Cr	${}^{40}Ar^{12}C^{+}, {}^{36}Ar^{16}O^{+}, {}^{38}Ar^{14}N^{+}$	H ₂		50	⁸⁹ Y
Cobalt	⁵⁹ Co	²⁴ Mg ³⁵ Cl ⁺ , ⁴³ Ca ¹⁶ O ⁺ , ⁴⁵ Sc ¹⁴ N ⁺	He120		50	Interpolate
Copper	⁶⁵ Cu	⁴⁰ Ar ²⁵ Mg ⁺	NG***		10	Interpolate
Copper (urine)	⁶⁵ Cu	⁴⁰ Ar ²⁵ Mg ⁺	He120		20	Interpolate
Gold	¹⁹⁷ Au		NG		20	¹⁹³ lr
lodine	127		NG		20	Interpolate
Iron	⁵⁶ Fe	⁴⁰ Ar ¹⁶ O ⁺	H ₂		20	⁸⁹ Y
Iron (blood)	⁵⁷ Fe	⁴⁰ Ar ¹⁶ O ¹ H ⁺ , ⁴⁰ Ca ¹⁶ O ¹ H ⁺	NG***		2.5	Interpolate
Lead	²⁰⁶⁻²⁰⁸ Pb		NG		20 each**	¹⁹³ lr
Lithium	⁷ Li		NG		20	⁴⁵ Sc
Magnesium	²⁵ Mg	¹² C ¹³ C ⁺	NG***		5	⁴⁵ Sc
Manganese	⁵⁵ Mn	³⁹ K ¹⁶ O ⁺ , ⁴⁰ Ar ¹⁵ N ⁺ , ³⁷ Cl ¹⁸ O ⁺	He120		50	Interpolate
Mercury	¹⁹⁹⁻²⁰² Hg		NG		50 each*	¹⁹³ lr
Molybdenum	⁹⁸ Mo		NG	- 0.1111 · 101Ru	20	Interpolate
Nickel	⁶⁰ Ni	²⁴ Mg ³⁶ Ar ⁺ , ⁴⁴ Ca ¹⁶ O ⁺ , ²³ Na ³⁷ Cl ⁺	He120		200	Interpolate
Palladium	¹⁰⁸ Pd		NG	- 0.07031 · 111Cd	20	Interpolate
Phosphorus	31P	¹⁵ N ¹⁶ O ⁺ , ¹⁴ N ¹⁶ O ¹ H ⁺	NG***		2.5	⁴⁵ Sc
Platinum	¹⁹⁵ Pt		nG		20	¹⁹³ lr
Potassium	³⁹ K	³⁸ Ar ¹ H ⁺ , ²³ Na ¹⁶ O ⁺	NG***		5	⁴⁵ Sc
Selenium	⁷⁸ Se	⁴⁰ Ar ³⁸ Ar ⁺ , ⁴⁰ Ca ³⁸ Ar ⁺	H ₂	- 0.03043 · ⁸³ Kr	50	⁸⁹ Y

Silver	¹⁰⁷ Ag		NG	20	Interpolate
Sodium	²³ Na		NG	5	⁴⁵ Sc
Thallium	²⁰⁵ TI		NG	20	¹⁹³ lr
Tin	¹¹⁸ Sn		NG	20	Interpolate
Titanium	⁴⁹ Ti	${}^{31}P{}^{18}O{}^{+},{}^{32}S{}^{16}O{}^{1}H{}^{+},{}^{14}N{}^{35}C{}^{1+},{}^{12}C{}^{37}C{}^{1+}$	He200	200	⁴⁵ Sc
Vanadium	⁵¹ V	³⁵ Cl ¹⁶ O ⁺ , ³⁸ Ar ¹³ C ⁺ , ⁴⁰ Ar ¹¹ B ⁺	He200	200	⁴⁵ Sc
Zinc	⁶⁶ Zn	³⁵ Cl ³¹ P ⁺	NG***	10	Interpolate
Zinc (urine)	⁶⁶ Zn	³⁵ Cl ³¹ P ⁺	He120	20	Interpolate

* Sum of the isotopes ¹⁹⁹Hg, ²⁰⁰Hg, ²⁰¹Hg und ²⁰²Hg to obtain higher sensitivity

** Sum of the isotopes ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb to account for variable isotopic abundances

*** Interferences are negligible due to high concentration of analyte (mg/L)

H₂ – Hydrogen mode; NG – no gas; He120 – Helium mode 120 mL/min; He200 – Helium mode 200 mL/min

Results and Discussion

Calibration

Exemplary calibration curves and parameters of As, Cd, Mn, and V are shown in Figure 1. Correlation coefficients were > 0.999 for all isotopes with deviations of < 10% from the calibration curve for all calibration levels (%Error).

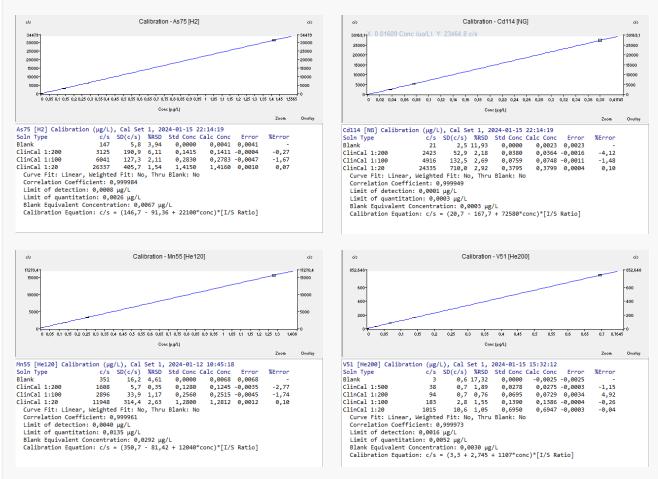


Figure 1: Calibration of As, Cd, Mn, and V by ICP-MS using matrix calibrators

Limits of detection and quantification

The instrumental limits of detection (LOD) and quantification (LOQ) of the calibration were determined using the blank and slope of the calibration curve in accordance with DIN 32645^[1] and are shown in Table 4. The method detection and quantification limits (MDL, MQL) were calculated considering the dilution factor of the sample preparation.

Table 4: Limits of detection and quantification of the calibration (LOD, LOQ) and method (MDL, MQL) determined in accordance with DIN $32645^{[1]}$

lsotope [Mode]	Unit	LOD	LOQ	MDL	MQL
²⁷ AI [He120]	µg/L	0.050	0.17	1.00	3.3
¹²¹ Sb [NG]	µg/L	0.00040	0.0013	0.0080	0.026
⁷⁵ As [H ₂]	µg/L	0.00080	0.0026	0.016	0.053
¹³⁷ Ba [NG]	µg/L	0.0027	0.0089	0.054	0.18
⁹ Be [NG]	µg/L	0.00060	0.0020	0.012	0.040
²⁰⁹ Bi [NG]	µg/L	0.00030	0.0010	0.0060	0.020
¹¹⁴ Cd [NG]	µg/L	0.00011	0.00035	0.0021	0.0070
⁴⁴ Ca [H ₂]	mg/L	0.0077	0.025	0.15	0.51
⁵² Cr [H ₂]	µg/L	0.0028	0.0092	0.056	0.18
⁵⁹ Co [He120]	µg/L	0.00040	0.0013	0.0080	0.026
⁶⁵ Cu [NG]	mg/L	0.0000048	0.000016	0.00010	0.00032
⁶⁵ Cu [He120]	µg/L	0.028	0.092	0.56	1.8
¹⁹⁷ Au [NG]	µg/L	0.0005	0.0017	0.010	0.033
¹²⁷ I [NG]	µg/L	0.0021	0.0069	0.042	0.14
⁵⁷ Fe [NG]	mg/L	0.017	0.055	0.33	1.1
⁵⁶ Fe [H ₂]	µg/L	0.0013	0.0043	0.026	0.086
²⁰⁶⁻²⁰⁸ Pb [NG]	μg/L	0.0007	0.0023	0.014	0.046
⁷ Li [NG]	mg/L	0.000010	0.000033	0.00020	0.00066
²⁵ Mg [NG]	mg/L	0.00015	0.00050	0.0030	0.0099
55Mn [He120]	µg/L	0.0040	0.013	0.080	0.26
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	0.0031	0.010	0.062	0.20
⁹⁸ Mo [NG]	µg/L	0.0015	0.0050	0.030	0.099
⁶⁰ Ni [He120]	µg/L	0.0015	0.0050	0.030	0.099
¹⁰⁸ Pd [NG]	µg/L	0.00020	0.00066	0.0040	0.013
³¹ P [NG]	mg/L	0.0061	0.020	0.12	0.40
¹⁹⁵ Pt [NG]	µg/L	0.000068	0.00022	0.0014	0.0045
³⁹ K [NG]	g/L	0.000068	0.00023	0.0014	0.0045
⁷⁸ Se [H ₂]	µg/L	0.0058	0.019	0.12	0.38
¹⁰⁷ Ag [NG]	µg/L	0.00040	0.0013	0.0080	0.026
²³ Na [NG]	g/L	0.000012	0.000039	0.00024	0.00079

²⁰⁵ TI [NG]	µg/L	0.00014	0.00046	0.0028	0.0092
¹¹⁸ Sn [NG]	µg/L	0.00040	0.0013	0.0080	0.026
⁴⁹ Ti [He180]	µg/L	0.10	0.34	2.0	6.7
⁵¹ V [He180]	µg/L	0.0016	0.0053	0.032	0.11
66Zn [NG]	mg/L	0.000037	0.00012	0.00073	0.0024
66Zn [He120]	µg/L	0.16	0.51	3.1	10

H, - Hydrogen mode; NG - no gas; He120 - Helium mode 120 mL/min; He200 - Helium mode 200 mL/min

Whole blood

The results of the analyzed whole blood reference materials are shown in Tables 5 and 6. Since AI, Ba, Be, Bi, Hg, I, Li, and V are not specified in the calibrator material, these elements could not be quantified using this calibrator-based method. In Seronorm[™] Whole Blood L-2 (Lot 1406264), out of the 23 elements specified in the whole blood calibrator only concentrations of the elements As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Sn, TI, and Zn are certified.

Table 5: Elemental concentrations and recoveries of ClinChek® Whole Blood Level I and II

Isotope	Unit	ClinChek [®] Who	le Blood Level I		ClinChek [®] Whole Blood Level II		
[Mode]		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]
⁷⁵ As [H ₂]	µg/L	3.16	-	105	9.46	7.66-11.5	99
¹¹⁴ Cd [NG]	µg/L	1.58	1.18-1.97	100	3.62	2.83-4.24	103
⁴⁴ Ca [H ₂]	mg/L	40.8	36.1-48.9	96	40.0	35.7-48.3	95
⁵² Cr [H ₂]	µg/L	2.39	1.67-2.78	107	5.99	4.47-7.44	100
⁵⁹ Co [He120]	µg/L	1.64	1.31-1.97	100	7.28	5.81-8.72	100
⁶⁵ Cu [NG]	mg/L	0.731	0.590-0.885	99	1.16	0.934-1.40	100
⁵⁷ Fe [NG]	mg/L	348	276-414	101	335	272-408	99
²⁰⁶⁻²⁰⁸ Pb [NG]	µg/L	37.1	30.1-45.2	99	95.4	76.5-115	100
²⁵ Mg [NG]	mg/L	24.2	21.6-26.4	101	32.1	29.1-35.6	99
55Mn [He120]	µg/L	7.67	6.32-9.48	97	15.1	11.7-17.6	104
⁹⁸ Mo [NG]	µg/L	2.05	1.64-2.46	100	4.71	3.64-5.47	103
⁶⁰ Ni [He120]	µg/L	2.01	1.58-2.63	96	4.51	3.62-5.43	100
¹⁰⁸ Pd [NG]	µg/L	1.40	1.07-1.61	105	2.54	2.01-3.02	101
³¹ P [NG]	mg/L	324	262-394	99	315	259-388	97
¹⁹⁵ Pt [NG]	µg/L	1.65	1.34-2.01	99	2.44	1.99-2.99	98
³⁹ K [NG]	g/L	1.19	1.07-1.31	100	1.58	1.44-1.75	99
⁷⁸ Se [H ₂]	µg/L	84.5	66.5-99.7	102	159	127-191	100
¹⁰⁷ Ag [NG]	µg/L	1.82	1.39-2.32	99	4.29	3.42-5.12	100
²³ Na [NG]	g/L	1.95	1.73-2.11	102	1.89	1.70-2.08	100
²⁰⁵ TI [NG]	µg/L	0.908	0.717-1.08	101	4.30	3.44-5.17	100
¹¹⁸ Sn [NG]	µg/L	1.74	1.51-2.26	93	4.34	3.76-5.64	92
66Zn [NG]	mg/L	4.37	3.55-5.32	99	5.98	4.90-7.36	98

lsotope	Unit	ClinChek [®] V	ClinChek [®] Whole Blood Level III			Seronorm [™] Whole Blood L-2		
[Mode]		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]	
⁷⁵ As [H ₂]	µg/L	19.4	15.4-23.0	101	12.8	11.3-17.0	90	
¹¹⁴ Cd [NG]	µg/L	7.24	5.63-8.44	103	4.90	4.00-6.02	98	
⁴⁴ Ca [H ₂]	mg/L	41.0	35.9-48.5	97	-	-	-	
⁵² Cr [H ₂]	µg/L	11.0	8.88-13.3	99	10.9	8.5-12.8	102	
⁵⁹ Co [He120]	µg/L	13.3	10.7-16.0	100	5.01	4.13-6.22	97	
⁶⁵ Cu [NG]	mg/L	1.71	1.36-2.04	101	1.28	1.07-1.60	95	
⁵⁷ Fe [NG]	mg/L	341	274-411	100	-	-	-	
²⁰⁶⁻²⁰⁸ Pb [NG]	µg/L	260	208-312	100	337	269-405	100	
²⁵ Mg [NG]	mg/L	40.9	37.0-45.3	99	-	-	-	
55Mn [He120]	µg/L	21.8	17.4-26.1	100	31.4	25.1-37.7	100	
⁹⁸ Mo [NG]	µg/L	8.82	7.06-10.6	100	5.08	4.24-6.37	96	
⁶⁰ Ni [He120]	µg/L	12.8	10.2-15.2	100	15.1	12.7-19.1	95	
¹⁰⁸ Pd [NG]	µg/L	5.33	4.32-6.47	99	-	-	-	
³¹ P [NG]	mg/L	327	263-394	100	-	-	-	
¹⁹⁵ Pt [NG]	µg/L	4.85	3.94-5.92	98	-	-	-	
³⁹ K [NG]	g/L	2.04	1.82-2.22	101	-	-	-	
⁷⁸ Se [H ₂]	µg/L	214	161-242	106	164	128-193	102	
¹⁰⁷ Ag [NG]	µg/L	8.57	6.8-10.2	101	-	-	-	
²³ Na [NG]	g/L	1.84	1.70-2.08	98	-	-	-	
²⁰⁵ TI [NG]	µg/L	8.60	6.9-10.3	100	10.5	8.1-12.2	103	
¹¹⁸ Sn [NG]	μg/L	8.93	7.56-11.3	95	5.30	4.19-6.30	101	
66Zn [NG]	mg/L	7.82	6.27-9.41	100	7.0	5.7-8.5	99	

Table 6: Elemental concentrations and recoveries of ClinChek[®] Whole Blood Level III and Seronorm[™] Whole Blood L-2

Urine

The results of the analyzed urine reference materials are shown in Tables 7 and 8. Since Au is not specified in the calibrator material, this element could not be quantified using this calibrator-based method. In Seronorm[™] Urine L-1 (Lot 1403080) and L-2 (Lot 1403081), concentrations of the elements Ag, Ba, Pd, and Pt are not certified.

lsotope Unit		ClinChek® L	Jrine Level I		ClinChek [®] Urine Level II		
[Mode]		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]
²⁷ Al [He120]	µg/L	32.0	26.7-40.0	96	84.7	65.8-98.7	103
¹²¹ Sb [NG]	µg/L	6.08	4.88-7.31	100	49.8	40.5-60.7	99
⁷⁵ As [H ₂]	µg/L	17.1	13.6-20.3	101	52.1	40.8-61.2	102
¹³⁷ Ba [NG]	µg/L	11.1	8.77-13.2	101	50.4	40.3-60.5	100
⁹ Be [NG]	µg/L	0.058	0.041-0.085	93	0.228	0.171-0.285	100
¹¹⁴ Cd [NG]	μg/L	2.53	2.05-3.08	99	14.7	11.8-17.7	100
⁵² Cr [H ₂]	µg/L	4.14	3.26-4.90	102	10.1	8.01-12.0	101
⁵⁹ Co [He120]	µg/L	2.04	1.64-2.46	99	9.90	7.84-11.8	101
⁶⁵ Cu [He120]	µg/L	59.0	46.6-69.9	101	115	92.2-138	100
¹²⁷ I [NG]	µg/L	115	92.2-138	100	520	413-619	101
⁵⁶ Fe [H ₂]	µg/L	41.0	32.5-48.8	101	223	178-267	100
²⁰⁶⁻²⁰⁸ Pb [NG]	µg/L	26.0	21.1-31.6	98	51.6	41.3-62.0	100
²⁵ Mg [NG]	mg/L	18.4	14.9-22.3	99	45.8	36.6-54.9	100
55Mn [He120]	µg/L	4.08	3.27-4.90	100	9.65	7.99-12.0	97
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	2.23	1.15-2.68	116	15.8	9.05-18.8	113
⁹⁸ Mo [NG]	µg/L	20.0	16.2-24.3	99	94.1	75.5-113	100
⁶⁰ Ni [He120]	µg/L	3.21	2.60-3.90	99	14.5	11.7-17.5	99
¹⁰⁸ Pd [NG]	µg/L	1.30	0.911-1.69	100	8.79	6.10-10.2	108
¹⁹⁵ Pt [NG]	µg/L	0.038	0.025-0.053	98	0.114	0.086-0.143	100
⁷⁸ Se [H ₂]	µg/L	29.0	21.8-36.3	100	81.6	65.4-98.1	100
¹⁰⁷ Ag [NG]	μg/L	1.36	0.944-1.75	100	5.32	3.99-6.65	100
²⁰⁵ TI [NG]	µg/L	7.26	5.90-8.85	98	19.4	15.5-23.3	100
¹¹⁸ Sn [NG]	µg/L	5.21	4.13-6.19	101	10.1	8.06-12.1	100
⁵¹ V [He200]	µg/L	20.7	16.8-25.2	98	50.5	41.3-62.0	98
66Zn [He120]	mg/L	0.191	0.156-0.234	98	0.592	0.478-0.717	99

lsotope	Unit	Seronorm™	Urine L-1		Seronorm [™] Urine L-2		
[Mode]		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]
²⁷ AI [He120]	µg/L	11.3	5.5-16.6	102	124	85-128	115
¹²¹ Sb [NG]	µg/L	9.0	5.0-9.4	126	103	72-133	100
⁷⁵ As [H ₂]	µg/L	156	126-190	99	258	209-314	99
⁹ Be [NG]	µg/L	-	-	-	5.3	4.1-6.2	102
¹¹⁴ Cd [NG]	μg/L	0.20	0.12-0.27	107	4.8	3.9-5.8	98
⁵² Cr [H ₂]	µg/L	10.1	7.6-11.4	106	29.8	24-36.1	99
⁵⁹ Co [He120]	μg/L	0.80	0.64-0.97	99	9.8	8.1-12.2	97
⁶⁵ Cu [He120]	µg/L	21	16-24	104	57.6	44.9-67.6	102
¹²⁷ I [NG]	μg/L	105	84-126	100	309	237-356	104
⁵⁶ Fe [H ₂]	μg/L	11.9	9.8-14.7	97	-	-	-
²⁰⁶⁻²⁰⁸ Pb [NG]	μg/L	0.72	0.36-1.08	100	81.2	64-96.2	101
²⁵ Mg [NG]	mg/L	76.6	61.3-92.2	100	-	-	-
55Mn [He120]	µg/L	1.35	1.10-1.66	98	9.7	7.4-11.2	104
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	0.097	0.077-0.116	101	45.0	35.2-52.9	102
⁹⁸ Mo [NG]	µg/L	47.1	37.6-56.6	100	-	-	-
⁶⁰ Ni [He120]	µg/L	1.59	1.27-1.92	99	39.4	32.5-48.8	97
⁷⁸ Se [H ₂]	µg/L	15.7	12.6-19.0	99	70.2	57.3-86.1	98
²⁰⁵ TI [NG]	μg/L	0.15	0.12-0.17	109	8.8	6.87-10.33	102
¹¹⁸ Sn [NG]	μg/L	0.33	0.26-0.39	102	48.4	38.6-58.1	100
⁵¹ V [He200]	μg/L	0.87	0.66-0.99	104	24.9	20.7-31.2	96
66Zn [He120]	mg/L	0.353	0.277-0.417	102	1.292	1.023-1.538	101

Table 8: Elemental concentrations and recoveries of Seronorm[™] Urine L-1 and L-2

Plasma

The results of the analyzed plasma reference materials are shown in Table 9. Since Au, Ba, Be, Fe, Li, Mo, and Ti are not specified in the calibrator material, these elements could not be quantified using this calibrator-based method.

Table 9: Elemental concentrations and recoveries of ClinChek® Plasma Level I and II

lsotope	Unit	ClinChek [®] F	ClinChek [®] Plasma Level I			ClinChek [®] Plasma Level II		
[Mode]		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]	
²⁷ AI [He120]	µg/L	9.91	7.60-14.1	91	46.2	36.6-60.9	95	
¹²¹ Sb [NG]	µg/L	1.28	0.982-1.64	98	4.75	3.82-5.73	100	
⁷⁵ As [H ₂]	µg/L	9.70	6.80-12.6	100	44.7	35.8-53.7	100	
²⁰⁹ Bi [NG]	µg/L	0.931	0.745-1.12	100	4.48	3.45-5.17	104	
¹¹⁴ Cd [NG]	µg/L	2.49	1.71-3.18	102	11.0	8.81-13.2	100	
⁵² Cr [H ₂]	µg/L	3.33	2.25-4.18	103	10.5	8.46-12.7	99	
⁵⁹ Co [He120]	µg/L	2.07	1.66-2.49	100	9.41	7.38-11.1	102	
⁵5Cu [NG]	mg/L	0.731	0.621-0.840	100	1.27	1.07-1.45	101	
¹²⁷ I [NG]	µg/L	48.7	39.3-59.0	99	104	82.8-124	100	
²⁵ Mg [NG]	mg/L	15.8	13.8-16.9	103	28.4	25.9-31.7	99	
55Mn [He120]	µg/L	4.54	3.56-5.34	102	15.7	12.2-18.3	103	
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	2.07	1.51-2.52	102	9.49	7.44-11.2	102	
⁶⁰ Ni [He120]	µg/L	6.79	4.73-8.79	100	13.9	11.1-16.7	100	
¹⁰⁸ Pd [NG]	µg/L	1.91	1.53-2.55	94	7.52	6.16-9.24	98	
¹⁹⁵ Pt [NG]	µg/L	1.72	1.41-2.12	98	6.90	5.50-8.25	100	
⁷⁸ Se [H ₂]	µg/L	75.5	56.8-85.1	106	119	93.5-140	102	
¹⁰⁷ Ag [NG]	µg/L	1.90	1.52-2.29	100	7.36	5.90-8.85	100	
²⁰⁵ TI [NG]	µg/L	5.26	4.20-6.29	100	10.4	8.25-12.4	101	
¹¹⁸ Sn [NG]	µg/L	1.24	0.903-1.68	96	7.61	6.24-9.36	98	
⁵¹ V [He200]	µg/L	1.23	0.747-1.39	115	9.35	7.88-11.8	95	
66Zn [NG]	mg/L	1.55	1.35-1.82	98	1.99	1.66-2.25	101	

Serum

The results of the analyzed urine reference materials are shown in Tables 10 and 11. In Seronorm[™] Serum L-1 (Lot 1309438) and L-2 (Lot 1309416), only concentrations of the elements AI, Cr, Co, Cu, Fe, Hg, Li, Mg, Mn, Ni, Se, and Zn are certified.

lsotope [Mode]	Unit	ClinChek [®] Serum Level I			ClinChek [®] Serum Level II		
		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]
²⁷ AI [He120]	µg/L	16.7	11.4-21.1	103	60.6	44.7-74.6	102
¹²¹ Sb [NG]	µg/L	1.78	1.37-2.05	104	7.11	5.54-8.31	103
⁷⁵ As [H ₂]	µg/L	9.38	7.58-11.4	99	18.4	15.4-23.2	95
¹³⁷ Ba [NG]	µg/L	23.9	19.6-29.5	98	60.8	49.1-73.7	99
⁹ Be [NG]	µg/L	2.06	1.45-2.42	106	9.47	7.31-12.2	97
²⁰⁹ Bi [NG]	µg/L	1.39	1.08-1.79	96	5.66	4.15-6.92	102
¹¹⁴ Cd [NG]	µg/L	1.93	1.56-2.35	98	5.74	4.75-7.13	97
⁵² Cr [H ₂]	μg/L	1.44	1.18-1.97	91	4.93	4.73-7.10	83
⁵⁹ Co [He120]	μg/L	1.99	1.60-2.41	99	5.44	4.53-6.79	96
⁶⁵ Cu [NG]	mg/L	0.744	0.632-0.855	100	1.42	1.19-1.61	101
¹⁹⁷ Au [NG]	µg/L	102	72.2-120	106	497	376-565	106
¹²⁷ I [NG]	µg/L	38.0	32.5-48.8	94	72.6	62.9-94.3	92
⁵⁶ Fe [H ₂]	mg/L	0.844	0.730-0.988	98	1.58	1.26-1.71	107
⁷ Li [NG]	mg/L	3.57	3.19-4.32	95	7.26	6.44-8.71	96
²⁵ Mg [NG]	mg/L	15.4	14.4-17.6	97	21.4	19.6-24.0	98
⁵⁵ Mn [He120]	µg/L	2.29	1.81-3.01	95	5.76	4.99-7.49	92
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	2.07	1.58-2.63	99	7.99	6.41-9.61	100
⁹⁸ Mo [NG]	µg/L	1.72	1.36-2.27	95	5.82	4.62-6.92	101
60Ni [He120]	µg/L	1.82	1.43-2.38	96	6.04	4.84-7.27	100
¹⁰⁸ Pd [NG]	µg/L	4.99	3.86-5.78	104	20.4	15.6-23.4	104
¹⁹⁵ Pt [NG]	mg/L	0.278	0.214-0.322	104	0.927	0.712-1.07	104
⁷⁸ Se [H ₂]	μg/L	59.9	46.1-69.2	104	107	83.7-126	102
¹⁰⁷ Ag [NG]	μg/L	4.98	3.85-5.77	104	20.1	15.5-23.3	103
²⁰⁵ TI [NG]	µg/L	1.94	1.52-2.29	102	7.93	6.18-9.27	103
¹¹⁸ Sn [NG]	µg/L	1.96	1.62-2.43	96	9.26	7.57-11.4	98
⁴⁹ Ti [He200]	µg/L	12.3	6.90-12.8	125	39.3	28.1-46.8	105
⁵¹ V [He200]	µg/L	2.07	1.47-2.45	106	8.24	6.13-9.19	108
66Zn [NG]	mg/L	1.15	1.04-1.40	95	1.62	1.45-1.96	95

Table 10: Elemental concentrations and recoveries of ClinChek® Serum Level I and II

lsotope [Mode]	Unit	Seronorm [™] Serum L-1			Seronorm [™] Serum L-2		
		Result	Control range	Recovery [%]	Result	Control range	Recovery [%]
²⁷ AI [He120]	µg/L	46.8	36.9-55.4	101	123	94-141	105
⁵² Cr [H ₂]	μg/L	2.39	1.30-3.05	110	5.5	4.0-7.5	96
⁵⁹ Co [He120]	µg/L	1.15	0.67-1.57	102	3.04	2.13-3.97	100
⁶⁵ Cu [NG]	mg/L	1.100	0.999-1.176	101	1.877	1.700-2.000	101
⁵⁶ Fe [H ₂]	mg/L	1.50	1.17-1.77	102	2.24	1.72-2.58	104
⁷ Li [NG]	mg/L	5.242	4.202-6.320	100	9.677	7.739-11.639	100
²⁵ Mg [NG]	mg/L	18.5	13.4-20.1	110	37.1	27.1-40.7	109
55Mn [He120]	µg/L	10.1	7.9-11.9	102	15.1	11.6-17.4	104
¹⁹⁹⁻²⁰² Hg [NG]	µg/L	1.10	0.53-1.60	103	2.05	1.44-2.67	100
⁶⁰ Ni [He120]	µg/L	5.56	3.38-7.90	99	9.8	7.9-11.9	109
⁷⁸ Se [H ₂]	µg/L	88	76-99	101	133	120-157	96
66Zn [NG]	mg/L	1.173	0.952-1.242	107	1.742	1.404-1.831	108

Table 11: Elemental concentrations and recoveries of Seronorm[™] Serum L-1 and L-2

H, - Hydrogen mode; NG - no gas; He120 - Helium mode 120 mL/min; He200 - Helium mode 200 mL/min

Summary

Achieving recoveries between 90% and 110% for the majority of the 33 investigated elements in all four body fluid matrices demonstrates the superior performance of the PlasmaQuant MS Q ICP-MS in the field of clinical diagnostics. Using the patented integrated collision reaction cell (iCRC), polyatomic interferences on even strongly interfered isotopes could be eliminated. With the patented ion mirror ReflexION for 90° deflection and 3D focusing of the ion beam, high sensitivity could be achieved allowing low method limits of detection in the ng/L range in both no gas and iCRC measurement modes.

The accuracy, sensitivity, and robustness of the PlasmaQuant MS Q is combined with exceptionally low running costs considering a total argon consumption of only 11.5 L/min for a measurement time of 2.5 minutes per sample for 33 elements using a volume of less than 70 μ L of the original sample.

Recommended device configuration

Table 12: Overview of devices, accessories, and consumables

Article	Article number	Description				
Initial configuration						
PlasmaQuant MS Q	818-08011-2	ICP-MS with integrated collision reaction cell				
Hydrogen generator	810-88026-0	Generator producing H_2 on-demand from ultrapure water				
Autosampler ASX-560	810-88015-0	Autosampler with up to 370 positions				
ASXPress Plus for PlasmaQuant MS	810-88017-0	Rapid introduction system with 7-port valve for ICP-MS				
Starter Kit PQMS STANDARD	810-88518-0	Kit of sample introduction system for aqueous samples				
Enclosure ENC-560 DC for ASX-560	810-88063-0	Dust protection cover for autosampler				
HEPA filter for enclosure ENC-560 DC	810-88064-0	For using the enclosure in combination with exhaust				
SeaSpray [™] nebulizer	418-88092-0	For aqueous samples with high matrix load				
Sample loop 1.25 mL for ASXPress Plus	418-88172-0	Inner diameter 1 mm				
Consumables						
Consumables kit ICP-MS all inclusive	810-88117-0	For PlasmaQuant MS Q				
Consumables kit autosampler	810-88126-0	For ASX-560 autosampler				
Consumables kit valve	810-88127-0	For ASXPress Plus rapid sample introduction system				
Maintenance kit hydrogen generator	810-88421-0	For hydrogen generator				

References

[1] DIN 32645:2008-11, Chemical analysis – Decision limit, detection limit and determination limit under repeatability conditions – Terms, methods, evaluation.

This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections. Trademark notice: The brand names of the third-party products specified in the application note are usually registered trademarks of the respective companies or organizations.

Headquarters

Analytik Jena GmbH+Co. KG Konrad-Zuse-Strasse 1 07745 Jena · Germany Phone +49 3641 77 70 Fax +49 3641 77 9279

info@analytik-jena.com www.analytik-jena.com Version 1.0 · Author: SeFa en · 12/2024 © Analytik Jena GmbH+Co. KG | Pictures ©: AdobeStock/ angellodeco