## Application Note · PlasmaQuant MS



#### Challenge

Determination of 28 elements, mostly in trace concentrations, in samples with high matrix load and various interferences

### Solution

Integrated collision reaction cell for targeted removal of interferences, patented 3D focusing of ions for high sensitivity

### Intended audience

Clinical diagnostics laboratories, research, pharma

# Determination of Trace Elements in Blood Serum and Plasma Using ICP-MS Applying Ready-to-Use IVD Kits

## Introduction

The determination of trace elements in human samples has become a standard method in medical diagnostics. The most common applications are analyses of whole blood, serum, plasma, and urine for various elements. The information that can be obtained from the elemental concentration varies depending on the element and sample type.

Essential trace elements such as copper, zinc, selenium, or iodine are mainly used as biomarkers. Certain diseases are known to cause deficiency or excess of certain trace elements, thus, if the concentration is outside the reference range, this could be a valuable indication for diagnosis. On the other hand, occupational medicine regularly analyzes clinical samples to monitor occupational exposure to toxic elements such as lead, chromium, cadmium, nickel, or mercury. Further possible applications include the monitoring of treatments (e.g., platinum determination after administration of platinum-based cytostatics) and implants (e.g., potential migration of titanium, chromium, or cobalt from implants into the human body).

Due to the high number of elements and sometimes very low concentrations that must be determined in human samples, inductively coupled plasma-mass spectrometry (ICP-MS) is the method of choice for this application. Its main advantages are multi-element capability, which allows short measurement times, and thus, high sample throughput and better sensitivity for most elements compared to other techniques for elemental analysis.

The determination of trace elements in human samples by ICP-MS in medical laboratories is subject to the guidelines of the EU regulation (EU) 2017/746 on *in vitro* diagnostic medical devices<sup>[1]</sup>, IVDR, which has become active in May 2022. While no standardized methods dedicated to ICP-MS exist for this application, the IVDR requires laboratories to



use kits certified for the respective analysis in accordance with IVDR wherever possible.

The use of so-called in-house IVD or laboratory developed tests (LDT), i.e., test methods developed in the respective laboratory itself, is only permitted for analyses for which no certified kit is available or existing kits do not offer an equivalent performance level. This must be justified in the laboratory's documentation from May 26, 2028 on.<sup>[2]</sup>

This work describes the application of a "Kit for trace element analysis in serum and plasma by ICP-MS/MS", which carries CE and IVDR-ready labels, using the PlasmaQuant MS ICP-MS from Analytik Jena. It will be shown that the applicability of the kit is not limited to instruments with

## Materials and Methods

### Samples and reagents

- Ultrapure water type I (>18.2 MΩ cm, ELGA Purelab<sup>®</sup>, Veolia Water Technologies Germany GmbH, Celle)
- ClinMass<sup>®</sup> ICP-MS/MS Complete Kit (RECIPE Chemicals + Instruments GmbH, Munich, Germany), consisting of:
  - Serum Calibrator Set Lot 2131 (Level 1–4)
  - Diluting Solution D
  - Autosampler Washing Solution
  - FAST Carrier Solution
  - Internal Standard IS
  - Sample Preparation Vials
  - Manual
- Injector Washing Solution (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek<sup>®</sup> Serum Control Level I, II Lot 2062 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- ClinChek<sup>®</sup> Plasma Control Level I, II Lot 2461 (RECIPE Chemicals + Instruments GmbH, Munich, Germany)
- Seronorm<sup>™</sup> Trace Elements Serum L-1 Lot 1309438, L-2 Lot 1309416 (SERO AS, Billingstad, Norway)
- Serum samples, prepared from different sample pools

### Sample preparation

The lyophilized control materials were reconstituted with ultrapure water following the manufacturers' information. Reconstituted and fresh samples were diluted tenfold with Diluting Solution D prior to the measurement in accordance with the manual.

### Calibration

The lyophilized serum calibrators were reconstituted with ultrapure water following the manufacturer's information and subsequently diluted tenfold with Diluting solution D prior to the measurement in accordance with the manual. Diluting Solution D was also used as the calibration blank. MS/MS technology. The patented integrated collision reaction cell allows effective interference management, while the patented 3D focusing of the ion beam by means of the ReflexION ion mirror provides the necessary sensitivity to accurately determine even the lowest elemental concentrations.

The IVD kit contains all solutions and calibrators that are needed for the analysis of 28 trace elements in serum and plasma using ICP-MS equipped with a rapid sample introduction system. The only preparation steps needed are the reconstitution of the calibrators and the dilution of samples and calibrators with the diluent.

### Instrumentation

A PlasmaQuant MS Q ICP-MS (Analytik Jena GmbH+Co. KG, Jena, Germany) was used for the analyses. Further details on the configuration of the system are listed in Table 1.

Table 1: Instrument configuration

| Parameter     | Specification                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------|
| Nebulizer     | SeaSpray (0.4 mL/min)                                                                                   |
| Spray chamber | Scott double-pass, Peltier cooled                                                                       |
| Torch         | Fassel torch with 2.4 mm injector                                                                       |
| Cones         | Nickel sampler and skimmer                                                                              |
| Autosampler   | ASX-560 (CETAC) with enclosure, HEPA filter, and ASXpress Plus (CETAC) rapid sample introduction system |

The rinse solution of the autosampler, the carrier solution of the rapid sample introduction system, and the internal standard solution were provided with the IVD kit. The internal standard solution was added on-line to the sample solution via the peristaltic pump of the PlasmaQuant MS. Black/black PVC tubings (0.76 mm ID) were used to introduce sample and internal standard solutions, diluting the samples further by a factor of 2 and resulting in an effective dilution factor of 20.

### **Method parameters**

The method parameters used are given in Table 2.

Table 2: General method parameters

| Parameter                 | Specification                                                                                                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Plasma gas flow           | 9.0 L/min                                                                                                                  |
| Auxiliary gas flow        | 1.20 L/min                                                                                                                 |
| Sheath gas flow           | 0.00 L/min                                                                                                                 |
| Nebulizer gas flow        | 1.01 L/min                                                                                                                 |
| RF power                  | 1.30 kW                                                                                                                    |
| Sampling depth            | 5.5 mm                                                                                                                     |
| Pump rate                 | 12 rpm                                                                                                                     |
| iCRC gas, flow            | Hydrogen: 80 mL/min (H <sub>2</sub> mode); 200 mL/min (H <sub>2</sub> B)<br>Helium: 120 mL/min (He120); 180 mL/min (He180) |
| Stabilization delay       | 40 s (H <sub>2</sub> ); 15 s (H <sub>2</sub> B); 15 s (nG); 10 s (He120); 10 s (He180)*                                    |
| Spray chamber temperature | 3 ℃                                                                                                                        |
| Skimmer bias (BOOST)      | 4 V (H <sub>2</sub> B)                                                                                                     |
| Points per peak           | 1 (Peak hopping)                                                                                                           |
| Scans per replicate       | 10                                                                                                                         |
| Replicates                | 3                                                                                                                          |

\* Switching times of < 5 s can be chosen between different measurement modes. To obtain the best measuring precision possible, longer stabilization delays were used achieving an average RSD of < 2%.</li>
H<sub>2</sub> – hydrogen mode; H<sub>2</sub>B – hydrogen boost mode; nG – no gas; He120 – helium mode 120 mL/min;

He180 - helium mode 180 mL/min

To eliminate matrix- or plasma-based polyatomic interferences, helium as a collision gas and hydrogen as a reaction gas were introduced into Analytik Jena's patented integrated collision reaction cell (iCRC). To achieve maximum sensitivity and lowest limits of detection for elements measured in reaction mode, the patented BOOST technology was used. In BOOST mode, a positive voltage is applied to the back of the skimmer cone. This enables compensating for the loss of sensitivity by collision of analytes with gas molecules in reaction gas modes with high flow rates. Isotopes which are not interfered by polyatomic interferences were measured in no gas mode. In total, five different measurement modes were used in this method: hydrogen, hydrogen boost, no gas, and two helium modes with flow rates of 120 mL/min and 180 mL/min, respectively.

#### **Evaluation parameters**

The choice of isotopes, measurement modes, and dwell times is shown in Table 3. For Hg, the sum of the isotopes <sup>199</sup>Hg, <sup>200</sup>Hg, <sup>201</sup>Hg, and <sup>202</sup>Hg was used to achieve a higher sensitivity. This can be done because no interferences are expected on any of these isotopes. For internal standards, dwell times of 20 ms in hydrogen- and no gas modes, and 50 ms in helium modes were chosen. The isotopes chosen were <sup>45</sup>Sc, <sup>74</sup>Ge, <sup>103</sup>Rh, and <sup>187</sup>Re.

Using the ASXPress Plus sample introduction system, a total measuring time of approx. 2.5 min for all elements listed in Table 3 could be achieved including sample uptake, measurement, and rinsing.

| Element    | lsotope               | Expected polyatomic interferences                                                                                                                                                         | Mode             | Correction<br>equation        | Dwell time<br>[ms] | Internal<br>standard |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|--------------------|----------------------|
| Aluminum   | <sup>27</sup> AI      | $^{13}C^{14}N^{+}$ , $^{11}B^{16}O^{+}$                                                                                                                                                   | He120            |                               | 50                 | <sup>45</sup> Sc     |
| Antimony   | <sup>121</sup> Sb     |                                                                                                                                                                                           | nG               |                               | 20                 | Interpolate          |
| Arsenic    | <sup>75</sup> As      | <sup>40</sup> Ar <sup>35</sup> Cl <sup>+</sup> , <sup>74</sup> Ge <sup>1</sup> H <sup>+</sup>                                                                                             | H <sub>2</sub>   |                               | 50                 | <sup>74</sup> Ge     |
| Barium     | <sup>137</sup> Ba     |                                                                                                                                                                                           | nG               |                               | 20                 | Interpolate          |
| Beryllium  | <sup>9</sup> Be       |                                                                                                                                                                                           | nG               |                               | 50                 | <sup>45</sup> Sc     |
| Bismuth    | <sup>209</sup> Bi     |                                                                                                                                                                                           | nG               |                               | 20                 | <sup>187</sup> Re    |
| Cadmium    | <sup>114</sup> Cd     |                                                                                                                                                                                           | nG               | - 0.0268 * 118Sn              | 20                 | Interpolate          |
| Chromium   | <sup>52</sup> Cr      | $^{40}Ar^{12}C^{+},  {}^{36}Ar^{16}O^{+},  {}^{38}Ar^{14}N^{+}$                                                                                                                           | H <sub>2</sub> B |                               | 50                 | <sup>74</sup> Ge     |
| Cobalt     | <sup>59</sup> Co      | <sup>24</sup> Mg <sup>35</sup> Cl <sup>+</sup> , <sup>43</sup> Ca <sup>16</sup> O <sup>+</sup> , <sup>45</sup> Sc <sup>14</sup> N <sup>+</sup>                                            | He120            |                               | 50                 | Interpolate          |
| Copper     | <sup>65</sup> Cu      | <sup>40</sup> Ar <sup>25</sup> Mg <sup>+</sup>                                                                                                                                            | He120            |                               | 50                 | <sup>74</sup> Ge     |
| Gold       | <sup>197</sup> Au     |                                                                                                                                                                                           | nG               |                               | 20                 | <sup>187</sup> Re    |
| lodine     | 127                   |                                                                                                                                                                                           | nG               |                               | 20                 | Interpolate          |
| Iron       | <sup>56</sup> Fe      | <sup>40</sup> Ar <sup>16</sup> O <sup>+</sup>                                                                                                                                             | H <sub>2</sub> B |                               | 20                 | <sup>74</sup> Ge     |
| Lithium    | <sup>7</sup> Li       |                                                                                                                                                                                           | nG               |                               | 20                 | <sup>45</sup> Sc     |
| Magnesium  | <sup>25</sup> Mg      | <sup>12</sup> C <sup>13</sup> C <sup>+</sup>                                                                                                                                              | He120            |                               | 50                 | <sup>45</sup> Sc     |
| Manganese  | ⁵⁵Mn                  | <sup>39</sup> K <sup>16</sup> O <sup>+</sup> , <sup>40</sup> Ar <sup>15</sup> N <sup>+</sup> , <sup>37</sup> Cl <sup>18</sup> O <sup>+</sup>                                              | He120            |                               | 50                 | Interpolate          |
| Mercury    | <sup>199-202</sup> Hg |                                                                                                                                                                                           | nG               |                               | 20 each            | <sup>187</sup> Re    |
| Molybdenum | <sup>98</sup> Mo      |                                                                                                                                                                                           | nG               | - 0.1111 * 101Ru              | 20                 | Interpolate          |
| Nickel     | <sup>60</sup> Ni      | <sup>24</sup> Mg <sup>36</sup> Ar <sup>+</sup> , <sup>44</sup> Ca <sup>16</sup> O <sup>+</sup> , <sup>23</sup> Na <sup>37</sup> Cl <sup>+</sup>                                           | He120            |                               | 50                 | Interpolate          |
| Palladium  | <sup>108</sup> Pd     |                                                                                                                                                                                           | nG               | - 0.07031 * 111Cd             | 20                 | Interpolate          |
| Platinum   | <sup>195</sup> Pt     |                                                                                                                                                                                           | nG               |                               | 20                 | <sup>187</sup> Re    |
| Selenium   | <sup>78</sup> Se      | <sup>40</sup> Ar <sup>38</sup> Ar <sup>+</sup> , <sup>38</sup> Ar <sup>40</sup> Ca <sup>+</sup>                                                                                           | H <sub>2</sub> B | - 0.03043 * <sup>83</sup> Kr  | 50                 | <sup>74</sup> Ge     |
| Silver     | <sup>107</sup> Ag     |                                                                                                                                                                                           | nG               |                               | 20                 | Interpolate          |
| Thallium   | <sup>205</sup> TI     |                                                                                                                                                                                           | nG               |                               | 20                 | <sup>187</sup> Re    |
| Tin        | <sup>120</sup> Sn     |                                                                                                                                                                                           | nG               | - 0.01429 * <sup>125</sup> Te | 20                 | Interpolate          |
| Titanium   | <sup>49</sup> Ti      | ${}^{35}\text{C}\text{I}{}^{14}\text{N}^{\text{+}},{}^{37}\text{C}\text{I}{}^{12}\text{C}^{\text{+}},{}^{33}\text{S}{}^{16}\text{O}^{\text{+}},{}^{31}\text{P}{}^{18}\text{O}^{\text{+}}$ | He180            |                               | 200                | Interpolate          |
| Vanadium   | <sup>51</sup> V       | $^{35}Cl^{16}O^+$ , $^{38}Ar^{13}C^+$ , $^{40}Ar^{11}B^+$                                                                                                                                 | He180            |                               | 200                | Interpolate          |
| Zinc       | <sup>66</sup> Zn      | <sup>35</sup> Cl <sup>31</sup> P+                                                                                                                                                         | He120            |                               | 50                 | <sup>74</sup> Ge     |

Table 3: Element specific method parameters

H<sub>2</sub> – hydrogen mode; H<sub>2</sub>B – hydrogen boost mode; nG – no gas; He120 – helium mode 120 mL/min; He180 – helium mode 180 mL/min

## Results and Discussion

### Calibration

Examples of calibration curves and parameters of Co, I, Hg, and Se are shown in Figure 1. Correlation coefficients were > 0.999 for all isotopes with deviations of less than 5% between the calculated and the expected concentrations for all calibration levels (%Error).



#### Limits of detection and quantification

The instrumental limits of detection (LOD) and quantification (LOQ) of the calibration were determined using the blank in accordance with DIN 32645<sup>[3]</sup> and are shown in Table 4. The method detection and quantification limits (MDL, MQL) were calculated considering the dilution factor of the sample preparation.

Table 4: Limits of detection and quantification of the calibration (LOD, LOQ) and method (MDL, MQL) determined in accordance with DIN 32645<sup>[3]</sup>

| Element    | Unit | LOD    | LOQ    | MDL   | MQL   |
|------------|------|--------|--------|-------|-------|
| Aluminum   | µg/L | 0.0698 | 0.2327 | 0.698 | 2.327 |
| Antimony   | µg/L | 0.0003 | 0.0009 | 0.003 | 0.009 |
| Arsenic    | µg/L | 0.0035 | 0.0117 | 0.035 | 0.117 |
| Barium     | µg/L | 0.0153 | 0.0511 | 0.153 | 0.511 |
| Beryllium  | µg/L | 0.0001 | 0.0005 | 0.001 | 0.005 |
| Bismuth    | µg/L | 0.0002 | 0.0008 | 0.002 | 0.008 |
| Cadmium    | µg/L | 0.0012 | 0.0039 | 0.012 | 0.039 |
| Chromium   | µg/L | 0.0049 | 0.0164 | 0.049 | 0.164 |
| Cobalt     | µg/L | 0.0009 | 0.0029 | 0.009 | 0.029 |
| Copper     | µg/L | 0.0027 | 0.0091 | 0.027 | 0.091 |
| Gold       | µg/L | 0.0006 | 0.0020 | 0.006 | 0.020 |
| lodine     | µg/L | 0.0035 | 0.0117 | 0.035 | 0.117 |
| Iron       | µg/L | 0.1285 | 0.4283 | 1.285 | 4.283 |
| Lithium    | µg/L | 0.0484 | 0.1613 | 0.484 | 1.613 |
| Magnesium  | mg/L | 0.0011 | 0.0037 | 0.011 | 0.037 |
| Manganese  | µg/L | 0.0035 | 0.0116 | 0.035 | 0.116 |
| Mercury    | µg/L | 0.0015 | 0.0049 | 0.015 | 0.049 |
| Molybdenum | µg/L | 0.0022 | 0.0074 | 0.022 | 0.074 |
| Nickel     | µg/L | 0.0044 | 0.0146 | 0.044 | 0.146 |
| Palladium  | µg/L | 0.0004 | 0.0014 | 0.004 | 0.014 |
| Platinum   | µg/L | 0.0003 | 0.0010 | 0.003 | 0.010 |
| Selenium   | µg/L | 0.0054 | 0.0181 | 0.054 | 0.181 |
| Silver     | µg/L | 0.0008 | 0.0026 | 0.008 | 0.026 |
| Thallium   | µg/L | 0.0001 | 0.0004 | 0.001 | 0.004 |
| Tin        | µg/L | 0.0009 | 0.0028 | 0.009 | 0.028 |
| Titanium   | µg/L | 0.0575 | 0.1917 | 0.575 | 1.917 |
| Vanadium   | µg/L | 0.0034 | 0.0112 | 0.034 | 0.112 |
| Zinc       | µg/L | 0.0233 | 0.0777 | 0.233 | 0.777 |

### Validation

To validate the method, the reference materials ClinChek<sup>®</sup> Serum, ClinChek<sup>®</sup> Plasma, and Seronorm<sup>™</sup> Serum were analyzed. The concentrations of all elements were within the control range specified by the manufacturer and most of the results were within a range of +/- 10% of the reference value. The results are shown in Tables 5, 6, and 7. No concentrations of the elements Bi and Ag were specified in the certificate of ClinChek<sup>®</sup> Plasma Level I and II (2. update). In Seronorm<sup>™</sup> Serum L-1 and L-2, only certified concentrations of the elements Al, Cr, Co, Cu, Fe, Li, Mn, Mg, Hg, Ni, Se, and Zn were given out of the 28 elements specified in the serum calibrators.

| Element   | Unit | Seronorm <sup>™</sup> Trace Elements Serum L-1 |               |              | Seronorm <sup>™</sup> Trace Elements Serum L-2 |               |              |  |
|-----------|------|------------------------------------------------|---------------|--------------|------------------------------------------------|---------------|--------------|--|
|           |      | Result                                         | Control range | Recovery [%] | Result                                         | Control range | Recovery [%] |  |
| Aluminum  | µg/L | 47.4                                           | 36.9-55.4     | 103          | 123                                            | 94-141        | 105          |  |
| Chromium  | µg/L | 2.60                                           | 1.30-3.05     | 119          | 5.74                                           | 4.0-7.5       | 101          |  |
| Cobalt    | µg/L | 1.06                                           | 0.67-1.57     | 95           | 2.94                                           | 2.13-3.97     | 97           |  |
| Copper    | µg/L | 1121                                           | 999-1176      | 103          | 1847                                           | 1700-2000     | 100          |  |
| Iron      | mg/L | 1.39                                           | 1.17-1.77     | 94           | 2.06                                           | 1.72-2.58     | 96           |  |
| Lithium   | µg/L | 4816                                           | 4202-6320     | 92           | 9260                                           | 7739-11639    | 96           |  |
| Magnesium | mg/L | 17.1                                           | 13.4-20.1     | 102          | 34.5                                           | 27.1-40.7     | 102          |  |
| Manganese | µg/L | 9.84                                           | 7.9-11.9      | 99           | 14.7                                           | 11.6-17.4     | 101          |  |
| Mercury   | µg/L | 1.06                                           | 0.53-1.60     | 99           | 1.94                                           | 1.44-2.67     | 94           |  |
| Nickel    | µg/L | 5.84                                           | 3.38-7.90     | 104          | 9.13                                           | 7.9-11.9      | 101          |  |
| Selenium  | µg/L | 85.9                                           | 76-99         | 99           | 137                                            | 120-157       | 99           |  |
| Zinc      | µg/L | 1075                                           | 952-1242      | 98           | 1632                                           | 1404-1831     | 101          |  |

Table 5: Elemental concentrations and recoveries of Seronorm<sup>™</sup> Serum L-1 and L-2

| Element    | Unit | ClinChek <sup>®</sup> Serum trace elements Level I |               |              | ClinChek <sup>®</sup> Serum trace elements Level II |               |              |
|------------|------|----------------------------------------------------|---------------|--------------|-----------------------------------------------------|---------------|--------------|
|            |      | Result                                             | Control range | Recovery [%] | Result                                              | Control range | Recovery [%] |
| Aluminum   | µg/L | 15.8                                               | 11.4-21.1     | 97           | 59.2                                                | 44.7-74.6     | 99           |
| Antimony   | µg/L | 1.74                                               | 1.37-2.05     | 102          | 6.94                                                | 5.54-8.31     | 100          |
| Arsenic    | µg/L | 9.52                                               | 7.58-11.4     | 100          | 19.3                                                | 15.4-23.2     | 100          |
| Barium     | µg/L | 24.0                                               | 19.6-29.5     | 98           | 62.1                                                | 49.1-73.7     | 101          |
| Beryllium  | µg/L | 1.91                                               | 1.45-2.42     | 99           | 9.77                                                | 7.31-12.2     | 100          |
| Bismuth    | µg/L | 1.49                                               | 1.08-1.79     | 103          | 5.37                                                | 4.15-6.92     | 97           |
| Cadmium    | µg/L | 1.93                                               | 1.56-2.35     | 98           | 5.81                                                | 4.75-7.13     | 98           |
| Chromium   | µg/L | 1.63                                               | 1.18-1.97     | 103          | 5.89                                                | 4.73-7.10     | 99           |
| Cobalt     | µg/L | 2.04                                               | 1.60-2.41     | 102          | 5.65                                                | 4.53-6.79     | 100          |
| Copper     | mg/L | 0.743                                              | 0.632-0.855   | 100          | 1.41                                                | 1.19-1.61     | 100          |
| Gold       | µg/L | 96.9                                               | 72.2-120      | 101          | 471                                                 | 376-565       | 100          |
| lodine     | µg/L | 40.8                                               | 32.5-48.8     | 100          | 77.1                                                | 62.9-94.3     | 98           |
| Iron       | mg/L | 0.831                                              | 0.730-0.988   | 97           | 1.49                                                | 1.26-1.71     | 101          |
| Lithium    | mg/L | 3.65                                               | 3.19-4.32     | 97           | 7.66                                                | 6.44-8.71     | 101          |
| Magnesium  | mg/L | 16.0                                               | 14.4-17.6     | 100          | 21.9                                                | 19.6-24.0     | 100          |
| Manganese  | µg/L | 2.38                                               | 1.81-3.01     | 99           | 6.32                                                | 4.99-7.49     | 100          |
| Mercury    | µg/L | 2.10                                               | 1.58-2.63     | 100          | 7.86                                                | 6.41-9.61     | 98           |
| Molybdenum | µg/L | 1.79                                               | 1.36-2.27     | 99           | 5.71                                                | 4.62-6.92     | 99           |
| Nickel     | µg/L | 1.90                                               | 1.43-2.38     | 100          | 6.07                                                | 4.84-7.27     | 100          |
| Palladium  | µg/L | 4.88                                               | 3.86-5.78     | 101          | 19.3                                                | 15.6-23.4     | 99           |
| Platinum   | mg/L | 0.258                                              | 0.214-0.322   | 96           | 0.924                                               | 0.712-1.07    | 104          |
| Selenium   | µg/L | 56.3                                               | 46.1-69.2     | 98           | 102                                                 | 83.7-126      | 97           |
| Silver     | µg/L | 4.89                                               | 3.85-5.77     | 102          | 18.9                                                | 15.5-23.3     | 98           |
| Thallium   | µg/L | 1.90                                               | 1.52-2.29     | 100          | 7.63                                                | 6.18-9.27     | 99           |
| Tin        | µg/L | 2.03                                               | 1.62-2.43     | 100          | 9.31                                                | 7.57-11.4     | 98           |
| Titanium   | µg/L | 9.13                                               | 6.90-12.8     | 93           | 37.0                                                | 28.1-46.8     | 99           |
| Vanadium   | µg/L | 2.06                                               | 1.47-2.45     | 105          | 7.63                                                | 6.13-9.19     | 100          |
| Zinc       | mg/L | 1.23                                               | 1.04-1.40     | 101          | 1.70                                                | 1.45-1.96     | 100          |

### Table 6: Elemental concentrations and recoveries of ClinChek® Serum Level I and II

| Element    | Unit | ClinChek® Plasma trace elements Level I |               |              | ClinChek® Plasma trace elements Level II |               |              |
|------------|------|-----------------------------------------|---------------|--------------|------------------------------------------|---------------|--------------|
|            |      | Result                                  | Control range | Recovery [%] | Result                                   | Control range | Recovery [%] |
| Aluminum   | µg/L | 7.11                                    | 4.82-8.94     | 103          | 46.6                                     | 33.6-56.0     | 104          |
| Antimony   | µg/L | 1.40                                    | 1.04-1.73     | 102          | 5.00                                     | 3.79-5.68     | 105          |
| Arsenic    | µg/L | 8.56                                    | 6.32-10.5     | 102          | 34.4                                     | 27.1-40.7     | 101          |
| Barium     | µg/L | 302                                     | 257-347       | 100          | 409                                      | 331-448       | 105          |
| Beryllium  | µg/L | 1.06                                    | 0.792-1.32    | 100          | 8.49                                     | 6.76-10.1     | 100          |
| Cadmium    | µg/L | 2.26                                    | 1.71-2.86     | 99           | 7.39                                     | 5.76-8.64     | 103          |
| Chromium   | µg/L | 3.09                                    | 2.36-3.94     | 98           | 10.3                                     | 8.52-12.8     | 96           |
| Cobalt     | µg/L | 2.03                                    | 1.58-3.28     | 102          | 9.16                                     | 7.24-10.9     | 101          |
| Copper     | mg/L | 0.831                                   | 0.715-0.967   | 99           | 1.39                                     | 1.18-1.60     | 100          |
| Gold       | µg/L | 2.03                                    | 1.54-2.57     | 99           | 8.01                                     | 6.45-9.68     | 99           |
| lodine     | µg/L | 41.2                                    | 33.4-50.1     | 99           | 79.4                                     | 62.3-93.5     | 102          |
| Iron       | mg/L | 0.766                                   | 0.660-0.893   | 99           | 1.16                                     | 0.959-1.30    | 103          |
| Lithium    | mg/L | 2.86                                    | 2.60-3.52     | 93           | 8.17                                     | 7.82-9.56     | 94           |
| Magnesium  | mg/L | 17.0                                    | 15.4-18.8     | 99           | 23.2                                     | 20.8-25.4     | 100          |
| Manganese  | µg/L | 2.83                                    | 2.29-3.43     | 99           | 7.25                                     | 5.93-8.89     | 98           |
| Mercury    | µg/L | 2.01                                    | 1.49-2.49     | 101          | 9.28                                     | 7.41-11.1     | 100          |
| Molybdenum | µg/L | 1.70                                    | 1.37-2.28     | 93           | 6.44                                     | 5.21-7.81     | 99           |
| Nickel     | µg/L | 1.87                                    | 1.24-2.30     | 106          | 7.06                                     | 5.64-8.46     | 100          |
| Palladium  | µg/L | 2.03                                    | 1.55-2.59     | 98           | 8.23                                     | 6.46-9.68     | 102          |
| Platinum   | µg/L | 1.87                                    | 1.49-2.23     | 100          | 7.28                                     | 5.87-8.80     | 99           |
| Selenium   | µg/L | 67.0                                    | 52.4-778.6    | 102          | 111                                      | 92.9-139      | 96           |
| Thallium   | µg/L | 0.971                                   | 0.796-1.19    | 98           | 7.77                                     | 5.79-8.68     | 108          |
| Tin        | µg/L | 1.15                                    | 0.833-1.55    | 96           | 7.63                                     | 6.10-9.14     | 100          |
| Titanium   | µg/L | 9.34                                    | 6.64-12.3     | 99           | 36.3                                     | 27.1-45.2     | 100          |
| Vanadium   | µg/L | 1.21                                    | 0.749-1.39    | 113          | 8.70                                     | 6.86-10.3     | 101          |
| Zinc       | mg/L | 1.56                                    | 1.32-1.78     | 101          | 1.90                                     | 1.63-2.21     | 99           |

### Table 7: Elemental concentrations and recoveries of ClinChek® Plasma Level I and II

### Stability

To evaluate the stability of the system, a measurement series of 60 serum samples and reference materials was conducted. The intensities of the internal standard isotopes were normalized to the second calibration standard and are shown in Figure 2. This shows that the internal standard recovery is mostly in a range of +/- 20% underlining the stability of the measurement. It should be noted that despite the twentyfold dilution (factor of 10 during sample preparation and additional factor of 2 during sample introduction by dilution with internal standard), the matrix load is still considerably high. This is also indicated by the distinct difference in internal standard recovery between blanks and samples/standards showing the matrix effect.



## Summary

Achieving recoveries between 90% and 110% for most and recoveries within the control range for all of the 28 investigated elements demonstrates that ready-to-use IVD kits validated for ICP-MS/MS analysis of serum and plasma can also be used with the PlasmaQuant MS, a singlequadrupole ICP-MS. Using the patented integrated collision reaction cell (iCRC), polyatomic interferences on strongly interfered isotopes could be eliminated. With the patented ReflexION ion mirror for 90° deflection and 3D focusing of the ion beam, high sensitivity could be achieved allowing low method limits of detection in the ng/L range in no gas and iCRC measurement modes. This work can serve as a basis for the validation of the IVD kit for trace elemental analysis of serum and plasma using single-quadrupole ICP-MS. With the IVD kit and PlasmaQuant MS, users benefit from easier and less tedious workflows in combination with low running costs considering that the ICP-MS is consuming only 11.21 L/min argon in total.



Figure 3: PlasmaQuant MS Q

#### **Recommended device configuration**

Table 8: Overview of devices, accessories, and consumables

| Article                               | Article number | Description                                              |  |  |  |  |
|---------------------------------------|----------------|----------------------------------------------------------|--|--|--|--|
| Initial configuration                 |                |                                                          |  |  |  |  |
| PlasmaQuant MS Q                      | 818-08011-2    | ICP-MS with integrated collision reaction cell (iCRC)    |  |  |  |  |
| Starter Kit PQMS STANDARD             | 810-88518-0    | Basic sample introduction components for aqueous samples |  |  |  |  |
| Hydrogen generator                    | 810-88026-0    | Generator producing $H_2$ on-demand from ultrapure water |  |  |  |  |
| Autosampler ASX-560                   | 810-88015-0    | Autosampler with up to 370 positions                     |  |  |  |  |
| ASXPress Plus for PQMS                | 810-88017-0    | Rapid sample introduction system for ICP-MS              |  |  |  |  |
| Enclosure ENC-560 DC for ASX-560      | 810-88063-0    | Dust protection cover for autosampler                    |  |  |  |  |
| HEPA filter for enclosure ENC-560 DC  | 810-88064-0    | For using the enclosure in combination with exhaust      |  |  |  |  |
| Seaspray nebulizer                    | 418-88092-0    | For aqueous samples with high matrix load                |  |  |  |  |
| Sample loop 1.25 mL for ASXPress Plus | 418-88172-0    | 1.25 mL sample loop with 1 mm inner diameter             |  |  |  |  |
|                                       | Consur         | nables                                                   |  |  |  |  |
| Consumables kit ICP-MS all inclusive  | 810-88117-0    | Consumables for PlasmaQuant MS Q                         |  |  |  |  |
| Consumables kit autosampler           | 810-88126-0    | Consumables for ASX-560 autosampler                      |  |  |  |  |
| Consumables kit valve                 | 810-88127-0    | Consumables for ASXPress Plus                            |  |  |  |  |
| Maintenance kit hydrogen generator    | 810-88421-0    | Consumables for hydrogen generator                       |  |  |  |  |

#### References

[1] (EU) 2017/746: Regulation of the European Parliament and of the Council on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU, April 05, 2017, Official Journal of the European Union, L117, 176-331.

[2] European Commission: Progressive roll-out of the In Vitro Diagnostic Medical Devices Regulation, December 20, 2021, updated on February 02, 2023, Press Release IP/21/6965

[3] DIN 32645:2008-11, Chemical analysis - Decision limit, detection limit and determination limit under repeatability conditions - Terms, methods, evaluation.

# Acknowledgment

We thank GANZIMMUN Diagnostics GmbH (Mainz, Germany) for providing the pooled serum samples.



This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections.

#### Headquarters

Analytik Jena GmbH & Co. KG Konrad-Zuse-Strasse 1 07745 Jena · Germany Phone +49 3641 77 70 Fax +49 3641 77 9279

info@analytik-jena.com www.analytik-jena.com Version 1.0 · Author: SeFa en · 09/2023 Pictures ©: Analytik Jena GmbH+Co. KG | AdobeStock/ angellodeco (p.1)