

Unique line evaluation in AAS

Introduction

The contrAA 800 enables the fast-sequential measurement of several analytes out of one sample run. If elements are present in significantly different concentrations in a set of samples, the selection of suitable alternative lines can be challenging. A feature of the AspectCS software however allows to attenuate strong absorbance signals by measuring at the edges of the respective resonance line. Several attenuation steps are available, to customize the spectral evaluation for each analyte and application. Multiple dilutions of the samples are obsolete with this additional option for flexible signal evaluation, because the working range of the contrAA 800 can be adapted to the sample requirements. Even after the measurement, the resulted signal intensities can be adjusted.

Your Benefits

- adaptation of the concentration range
- flexible signal evaluation
- determination of trace and major elements in the same sample with just one method
- less dilution effort

Technical basics

The contrAA 800 with its unique Continuum Source (short arc xenon lamp) in combination with the highresolution spectrometer (HR-CS-AAS) enables the use of alternative absorption lines with good precision. The different luminous efficacies of hollow cathode lamps are not an issue with the element-independent light generation of the contrAA 800.

Due to the high-resolution optics, the absorption signal is well resolved and detected by several pixel. The peak maximum is usually used for signal evaluation. However, high signals reasoned by a high concentration of the analyte, can be evaluated at the peak edge, which is equivalent to an attenuation of the signal. This unique AAS feature of the contrAA 800 series is the so-called side pixel evaluation.

Analytik Jena GmbH+Co.KG Konrad-Zuse-Straße 1 07745 Jena · Germany Phone +49 3641 77 70 Fax +49 3641 77 9279 info@analytik-jena.com www.analytik-jena.com Version: 08.24 NoEn

Software feature

The AspectCS software offers the possibility of the side pixel evaluation. In this case the intensity reduction of the signal is achieved by shifting the evaluation pixels from the center of the peak to the less sensitive edges. Thus, even high signal values can be evaluated with high sensibility. The free selection of the used evaluation area is provided by the used CCD detector chip with 200 photosensitive pixels. The further away the evaluation pixels are from the peak center, the stronger the signal reduction occurs. This adaptation of the signal evaluation is even available after the measurement.

Meth	nod										-		×
nes	Flame	Sample transport	Evaluation	Calib.	Statistics	QCS	QCC	Outpu	t				
No.	Line	Spectr.range	Eval.Pixels		BGC mode		Perm.Str	uct.	BGC fit	В	GC pixe	els	
1	Fe248	200	3 pixel	IBC			off						
2	Ni232	200	3 pixel	IBC			off						
3	Cu324	200	3 pixel	IBC			off						
4	Mn279	200	3 pixel	IBC			off						
5	Co240	200	3 pixel	IBC			off						
6	Pb217	200	3 pixel	IBC			off						
7	Cd228	200	3 pixel	IBC			off						
										+=	<i>r</i> =	17	
Spe	ectral co	rrections (none	.)										
Spe	Attenua	rrections (none	;)		Atte	nuatior	n						
Spe	Attenua	rrections (none)		Atte	nuation	n L	ine	Lev	vel		Evalu	ation pixe
Spe	Attenua	tion (none)		Atte	nuation No. 1	n L Fe24	ine 18	Lev	vel	3 pixe	Evalu	ation pixe
-th On	Attenua	inone (none	.)	a (Atte	No. 1 2	n Fe24 Ni23	.ine 18 2	off off	vel	3 pixe 3 pixe	Evalu: I	ation pixe
Spe Dp	Attenua	ation (none)		ē (Atte	No. 1 2 3	Fe24 Ni23 Cu32	ine 18 2 24	off off	vel	3 pixe 3 pixe 3 pixe	Evalu: I I	ation pixe
ope ∎¹ Op	Attenua	ation (none)		ē (Atte	No. 1 2 3 4	n Fe24 Ni23 Cu32 Mn2	ine 48 2 24 79	off off off off	vel	3 pixe 3 pixe 3 pixe 3 pixe	Evalu: I I	ation pixe
Op	Attenua	ation (none		ē (Atte	No. 1 2 3 4 5	n Fe24 Ni23 Cu32 Mn2 Co24	-ine 48 2 24 79 40	off off off off	vel	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe	Evalu: I I I	ation pixe
Op	Attenua	ation (none		ē (Atte	No. 1 2 3 4 5 6	Fe24 Ni23 Cu32 Mn2 Co24 Pb2	ine 48 2 24 79 40 17	off off off off off off off	vel	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe	Evalua I I I I I	ation pixe
Dp	Attenua	ation (none		o (Atte	No. 1 2 3 4 5 6 7	Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 2 24 79 40 17 28	Lev off off off off off off off	vel vel	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalua I I I I I .pix.+/-3	ation pixe
ope	Attenua	ation (none		ē (Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 2 24 79 40 17 28	Lev off off off off off off off off off	vel vel	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalua I I I I I I I I I I I I I	ation pixe
Op	Attenua	ation (none		. (Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 22 24 79 40 17 28	Lev off off off off off off off medium off weak modium	vel v	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: I I I I .pix.+/-3	ation pixe
Op	Attenua	ation (none		.	Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 2 24 79 40 17 28	Lev off off off off off off medium off weak medium	vel V	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: .pix.+/-3	ation pixe
Dp	Attenua	ation (none		ə (Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 2 24 79 40 17 28	off off off off off off off weak medium strong verv strong	vel v	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: pix.+/-3	ation pixe
Dp	Attenua	ation (none	- -	.	Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 2 24 79 40 17 28	off off off off off off medium off weak medium strong very stron	vel v	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: pix.+/-3	ation pixe
эре Ор	Attenua	ation (none		ē (Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 22 47 79 40 17 28	Lev off off off off off off weak weak weak weak weak wey stron	rel	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: I I I I pix.+/-3	ation pixe
эре • Ор	Attenua	ation (none		.	Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn22 Co24 Pb2 Cd23	ine 48 2 24 79 40 17 28	off off off off off off off weak weak strong very stron	vel 🔽	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalua I I I I I I pix.+/-3	ation pixe
Sp€	Attenua	tion (none		ē (Atte	No. 1 2 3 4 5 6 7	n Fe24 Ni23 Cu32 Mn2 Co24 Pb2 Cd22	ine 48 22 24 79 40 17 28	off off off off off off weak medium strong very stron	rel v	3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe 3 pixe Meas	Evalu: pix.+/-3	ation pixe

Application example

The signal attenuation resulting from the adjustment of the readout pixels is illustrated on the example of the absorption line for zinc at 213 nm (table 1, pixels are marked in orange) This function can be used to create calibration functions that enable sensitive measurements over five orders of magnitude (0.05 – 500 mg/L Zn) in just one method and single measurement run.

Phone +49 3641 77 70 Fax +49 3641 77 9279 info@analytik-jena.com www.analytik-jena.com Version: 08.24 NoEn

Summary

This unique feature of the contrAA 800 based on the high-resolution continuum source technique, where the spectral vicinity of the analysis line is included in the detection and recording. The ASpect CS software gives the experienced user the opportunity to customize the evaluation of the absorption signal. This results in a maximum of flexibility, a significantly expanded working range over five orders of magnitude and an analytical performance that can be optimized for the requirements of each application.

Reference: TechNote_AAS_0002_en

This document is true and correct at the time of publication; the information within is subject to change. Other documents may supersede this document, including technical modifications and corrections.

Content may be used without written permission but with citation of source. © Analytik Jena GmbH+Co.KG

Phone +49 3641 77 70 Fax +49 3641 77 9279 info@analytik-jena.com www.analytik-jena.com Version: 08.24 NoEn